Energy-sensing and signaling by AMP-activated protein kinase in skeletal muscle.

نویسنده

  • W W Winder
چکیده

AMP-activated protein kinase (AMPK) is emerging as an important energy-sensing/signaling system in skeletal muscle. This kinase is activated allosterically by 5'-AMP and inhibited allosterically by creatine phosphate. Phosphorylation of AMPK by an upstream kinase, AMPK kinase (also activated allosterically by 5'-AMP), results in activation. It is activated in both rat and human muscle in response to muscle contraction, the extent of activation depending on work rate and muscle glycogen concentration. AMPK can also be activated chemically in resting muscle with 5-aminoimidazole-4-carboxamide-riboside, which enters the muscle and is phosphorylated to form ZMP, a nucleotide that mimics the effect of 5'-AMP. Once activated, AMPK is hypothesized to phosphorylate proteins involved in triggering fatty acid oxidation and glucose uptake. Evidence is also accumulating for a role of AMPK in inducing some of the adaptations to endurance training, including the increase in muscle GLUT-4, hexokinase, uncoupling protein 3, and some of the mitochondrial oxidative enzymes. It thus appears that AMPK has the capability of monitoring intramuscular energy charge and then acutely stimulating fat oxidation and glucose uptake to counteract the increased rates of ATP utilization during muscle contraction. In addition, this system may have the capability of enhancing capacity for ATP production when the muscle is exposed to endurance training.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Eight Weeks Aerobic and Resistance Training on AMP-Activated Protein Kinase (AMPK) Gene Expression in Soleus Muscle and Insulin Resistance of STZ-Induced Diabetic Rat

Background: AMPK regulation is one of biggest target in T2D and metabolic syndrome research. Therefore, the present study is aimed to investigate The effect of 8 weeks aerobic and Resistance training on AMP-activated protein kinase (AMPK) gene expression in soleus muscle and insulin resistance of STZ-induced diabetic rat. Methods: The research method of present study was experimental. For this...

متن کامل

Energy sensing and regulation of gene expression in skeletal muscle.

Major modifications in energy homeostasis occur in skeletal muscle during exercise. Emerging evidence suggests that changes in energy homeostasis take part in the regulation of gene expression and contribute to muscle plasticity. A number of energy-sensing molecules have been shown to sense variations in energy homeostasis and trigger regulation of gene expression. The AMP-activated protein kin...

متن کامل

Invited Review HIGHLIGHTED TOPIC Role of Exercise in Reducing the Risk of Diabetes and Obesity Contraction signaling to glucose transport in skeletal muscle

Jessen, Niels, and Laurie J. Goodyear. Contraction signaling to glucose transport in skeletal muscle. J Appl Physiol 99: 330–337, 2005; doi:10.1152/ japplphysiol.00175.2005.—Contracting skeletal muscles acutely increases glucose transport in both healthy individuals and in people with Type 2 diabetes, and regular physical exercise is a cornerstone in the treatment of the disease. Glucose transp...

متن کامل

Role of Exercise in Reducing the Risk of Diabetes and Obesity Contraction signaling to glucose transport in skeletal muscle

Jessen, Niels, and Laurie J. Goodyear. Contraction signaling to glucose transport in skeletal muscle. J Appl Physiol 99: 330–337, 2005; doi:10.1152/ japplphysiol.00175.2005.—Contracting skeletal muscles acutely increases glucose transport in both healthy individuals and in people with Type 2 diabetes, and regular physical exercise is a cornerstone in the treatment of the disease. Glucose transp...

متن کامل

AMP-activated protein kinase and the regulation of glucose transport.

The AMP-activated protein kinase (AMPK) is an energy-sensing enzyme that is activated by acute increases in the cellular [AMP]/[ATP] ratio. In skeletal and/or cardiac muscle, AMPK activity is increased by stimuli such as exercise, hypoxia, ischemia, and osmotic stress. There are many lines of evidence that increasing AMPK activity in skeletal muscle results in increased rates of glucose transpo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of applied physiology

دوره 91 3  شماره 

صفحات  -

تاریخ انتشار 2001